Shape Sharing for Object Segmentation

نویسندگان

  • Jaechul Kim
  • Kristen Grauman
چکیده

We introduce a category-independent shape prior for object segmentation. Existing shape priors assume class-specific knowledge, and thus are restricted to cases where the object class is known in advance. The main insight of our approach is that shapes are often shared between objects of different categories. To exploit this “shape sharing” phenomenon, we develop a non-parametric prior that transfers object shapes from an exemplar database to a test image based on local shape matching. The transferred shape priors are then enforced in a graphcut formulation to produce a pool of object segment hypotheses. Unlike previous multiple segmentation methods, our approach benefits from global shape cues; unlike previous top-down methods, it assumes no classspecific training and thus enhances segmentation even for unfamiliar categories. On the challenging PASCAL 2010 and Berkeley Segmentation datasets, we show it outperforms the state-of-the-art in bottom-up or category-independent segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

مدل‌سازی تاثیرات پسروی دریاچه ارومیه بر روستاهای ساحل شرقی دریاچه ارومیه با پردازش شیءگرای تصاویر ماهواره‌ای

Urmia Lake is one of the largest hyper saline lakes in the world and largest inland lake in Iran which located in the north west of Iran, between the provinces of East Azerbaijan and West Azerbaijan. The lake basin is one of the most influential and valuable aquatic ecosystems in the country and registered as UNESCO Biosphere Reserve. In addition, it is very important in terms of water resource...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012